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Abstract. This paper explores selected approaches to High Energy Density (HED) fusion, 
beginning with discussion of ignition requirements at the National Ignition Facility (NIF).  The 
needed improvements to achieve ignition are closely tied to the ability to concentrate energy in 
the implosion, manifested in the stagnation pressure, Pstag.  The energy that must be assembled 
in the imploded state to ignite varies roughly as Pstag

-2, so among other requirements, there is a 
premium on reaching higher Pstag to achieve ignition with the available laser energy.  The U.S. 
inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through 
improvements to capsule stability and symmetry.  One can argue that recent experiments place 
an approximate upper bound on the ultimate ignition energy requirement.  Scaling the 
implosions in spatial, temporal and energy scales shows that implosions of the demonstrated 
quality ignite robustly at 9-15 times the current energy of NIF.  While lasers are unlikely to 
reach that bounding energy, it appears that pulsed power sources could plausibly do so, giving 
a range of paths forward for ICF depending on success in improving energy concentration.  In 
this paper, I show the scaling arguments then discuss topics from my own involvement in HED 
fusion.  The recent Viewfactor experiments at NIF have shed light on both the observed 
capsule drive deficit and errors in the detailed modelling of hohlraums.  The latter could be an 
important factor in the inability to achieve the needed symmetry and energy concentration.  
The paper then recounts earlier work in Fast Ignition and the uses of pulsed power for HED 
and fusion applications.  It concludes with a description of a method for improving pulsed 
power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like 
drive conditions and reach the energy bound for indirect drive ICF.          

1.  Introduction 
High Energy Density (HED) fusion research is in an exciting time given the progress on the National 
Ignition Facility (NIF).  Ignition remains elusive, yet the important milestone of alpha particle heating 
– doubling the yield due to self-heating – appears likely to be within reach.  The basic requirements 
for ICF ignition are well known [1].  The temperature of the ignition region must be high enough to 
exceed radiative losses and give high fusion reactivity, e.g., a burn averaged value of near 4.5 keV or 
higher.  Most of the alpha particle energy must be deposited in the ignition spot and the Lawson 
parameter, the product of pressure and energy confinement time, Pτ,	  must be high enough to give 
significant gain.  The latter two conditions can usually be expressed in terms of ρR, or density times 
radius in g/cm2, with ρR ~ 0.3 in the hot spot to trap alphas and the total ρR >1 to give reasonable 
gain.  



 
 
 
 
 
 

If we focus on the energy requirements of the hot spot, then a simple relationship between energy 
and the stagnation pressure of the capsule exists.  Since 𝑃!"#$ ∝ 𝜌𝑇 for high temperature matter, and 
the hot spot energy is proportional to the product of pressure and volume, we have the result: 
 

𝐸!"#$%"# ∝ 𝜌𝑇𝑅! =
𝜌𝑅 !𝑇
𝜌!

∝
𝜌𝑅𝑇 !

𝑃!"#$!
∝ 𝑃!"#$!! (1)  

The last relationship in equation (1) follows if we take ρR and T to be determined by the ignition 
requirements.  For instance at 𝜌𝑅 = 0.3,𝑇 = 4.5𝑘𝑒𝑉 we have 𝐸!"#$%"# ≅ 70𝑘𝐽   ∗ 𝑃!"#$!! for 𝑃!"#$ in 
units of 100 GBar.  The total energy invested in fuel internal energy is larger than 𝐸!"#$%"# because of 
the surrounding dense, cold fuel layer needed for inertial confinement.  High gain hot-spot targets 
could be dominated by the energy of the cold fuel, but ignition targets at the NIF have cold fuel energy 
comparable to hot spot energy.  Fast ignition designs have similar scaling but require higher ρR in the 
ignition spot. 

Equation (1) shows the importance of reaching high stagnation pressures to enable ignition at 
reasonable energy.  At 400 GB, typical of ignition designs, the hot spot energy required is about 4.4 
kJ, which should be achievable at NIF.  Most experiments to date, on the other hand, have been 
limited to 𝑃!"#$ ≲ 150𝐺𝐵 [2].  Many factors such as implosion symmetry, hydrodynamic instability, 
shock mis-timing or fuel pre-heat could contribute to low 𝑃!"#$, and improved understanding of these 
effects are among the main thrusts of the experimental program moving forward.  One simple way of 
looking at the issue is through energy conservation.  The stagnated state energy should approximately 
equal the PdV work done by the implosion: 
 𝑃!"#$𝑉!"#$ ∝ 𝑃!"#$%𝑉! → 𝑃!"#$ ∝ 𝑃!"#$% 𝑉! 𝑉!"#$ → 𝑃!"#$ ∝ 𝑃!"#$%𝐶! (2) 
where 𝑃!"#$% is the average drive pressure,~𝑇!!.! for indirect drive. 𝑉!  and 𝑉!"#$ are the initial and 
stagnation volumes and 𝐶 is the fuel convergence ratio.  Note that 𝐶 defined this way differs from the 
usual hot spot convergence ratio.  One caveat with this expression is that many NIF implosions have 
missing energy, i.e., kinetic energy present in the implosion is incompletely converted to internal 
energy [2].  The drive temperature and pressure are limited by available power or laser intensity limits 
within the hohlraum, so increasing 𝑃!"#!  depends critically on reducing sources of asymmetry, 
instability, etc. that limit 𝐶 or disrupt the efficient energy conversion assumed in equation (2).  

The High Foot experiments [3] recently conducted at NIF, so named for the higher drive 
temperature and shock pressure during the foot of the pulse, are interesting not only in being the 
highest yield to date, but because they agree well with simulations for most measured and inferred 
quantities such as yield, ρR, burn temperature, and pressure. They thus represent validation of 
hydrodynamic and burn models for their operating regime of implosions on the NIF.  With a burn-
averaged 𝑃!"#$ of 100 – 150 GB, and 𝐶~17 they are below ignition requirements at the available 
energy, but arguably they set a bound on what energy would be needed to ignite at the values of  𝐶 and 
𝑃!"#$ that have already been demonstrated.  Equation (1) suggests that bound is about one order of 
magnitude larger than the existing NIF implosions, however we can use simulations to better quantify 
the issue.  Starting with a 1 dimensional radiation hydrodynamics model of the High Foot implosion 
experiment N130710, we can scale the implosion while preserving drive pressure, shock-timing, 𝐶 and 
𝑃!"#$ ≅ 119𝐺𝐵 using Euler scaling: 

 𝑅 → 𝑆𝑅, 𝑡 → 𝑆𝑡, 𝑃 → 𝑃, 𝐸 → 𝑆!𝐸 (3)  
where  𝑆 is the spatial/temporal scale factor, giving scaling as 𝑆! in energy.  The calculations do not 
include the ablator, but use a pressure drive extracted at the fuel-ablator interface since radiation-
driven ablation does not strictly follow Euler scaling.  Heat conduction in the hot spot also does not 
follow Euler scaling, but has little effect on 𝐶 and 𝑃!"#$.  Burn-off calculations confirm that 𝐶 and 
𝑃!"#$ are preserved for 𝑆 < 3.  The results of the scaling are shown in figure 1, confirming the 
expectation from equation (1).  Interestingly, the bounding energy for ignition (and high yield) from 
this argument may be within the capabilities of future laboratory drivers.  The dashed lines in figure 1 



 
 
 
 
 
 

show the drive energy from a hypothetical 16MJ pulsed power source discussed below.  As indicated 
in figure 2, the path toward ignition may come through either raising the drive energy, improving 
implosion quality or both.  In that vein, the recent experiment N130927 achieved preliminary values of 
inferred pressure of ~ 150GB, suggesting a revised bounding energy a ~40% lower than shown in 
figure 1.  

 

 

 

Figure 1. Yields with alpha deposition on/off and the ratio of 
alpha-on to alpha-off yield from hydrodynamically scaled High 
Foot capsule, versus the energy scale factor, 𝑆! 

 Figure 2. Possible paths 
toward ignition  

 

2.  Viewfactor Experiments 
A viewfactor experiment, shown in Figure 3, employs an ignition-scale cryogenic hohlraum with one 
end cut off, exposing the interior and far laser entrance hole (LEH) to views that allow absolute 
measures of x-ray flux with Dante diagnostics as well as x-ray imaging. The purpose is to characterize 
the x-ray drive from the viewpoint of a capsule, as opposed to the usual measurement of the drive 
through the LEH from which the capsule drive is inferred.  The experiments are designed to create a 
plasma and radiation environment as close as possible to the ignition target while allowing for the 
improved view of the hohlraum interior.  The experiments are motivated by inconsistencies between 
the LEH-inferred drive and the implosion trajectories of capsules.  As reported in greater detail in by 
M Schneider at another paper at this conference, viewfactor experiments are indeed largely consistent 
with a lower capsule drive than the LEH-inferred drive.  The drive deficit of 15-25% represents much, 
although perhaps not all, of the discrepancy between simulations and the observed implosion 
trajectory.  X-ray imaging diagnostics provide a wealth of data about the uniformity and spatial 
location of hohlraum reemission, as well as clear signatures of the effect of cross beam energy transfer 
on beam spot emission. 

Figure 4 shows the ratio of measured to calculated drive through the open end of the hohlraum, 
indicating a discrepancy largely consistent with drive multipliers used to match observed capsule 
trajectories.  In contrast, the ratio of measured to calculated drive through the LEH end is close to 1, as 
usually found for cryogenic hohlraums.  X-ray imaging suggests the discrepancy is due to cancelling 
errors from over-calculating both LEH closure and the internal hohlraum drive.  As shown in Figure 3, 
x-ray images at energies near the peak of the wall reemission spectrum show structure which can 
imprint asymmetries on the capsule. Variation in wall reemission is expected as shown in the bottom 
image in Figure 3, but the detailed pattern differs significantly from the calculation. Images at higher 
x-ray energies show that the extent and location of the “gold bubble” produced by the laser spots also 
differ from calculations.  The pattern of x-ray emission near the wall determines the time dependent 
implosion symmetry: if the emission is decomposed into spherical harmonics, the non-uniformities in 
intensity distribution at the capsule are smoothed by factors of a few at low mode number, l to an order 
of magnitude or more at high l.  The resulting net drive flux asymmetry is inversely proportional to the 



 
 
 
 
 
 

achievable convergence, 𝐶, so improvements in hohlraum modeling and control appear to be critical to 
increasing 𝑃!"#$, as indicated by equation 2, and the chances of ignition suggested by equation 1.  

 

 

 
Figure 3. Viewfactor target and time integrated 
images through the open end at 870 eV for shot 
N120816, experiment(top) and 2D 
simulation(bottom).  Lineouts show 20% 
brightness variation, differing from simulated wall 
reemission, especially for inner beams. 

 Figure 4. The ratio of measured to 
calculated open end x-ray flux for viewfactor 
experiments N120806 and N121205, along 
with drive multipliers inferred from capsule 
trajectories. The laser pulse is shown for 
reference. 

3.  Fast Ignition 
Consider another chapter in the fusion story: fast ignition.  Around 1990, two technological 
developments of interest were taking place.  First, the phenomenon of radiative collapse in a cryogenic 
deuterium or deuterium-tritium fiber z-pinch was being studied [4], and second, the new chirped-pulse 
laser technology had been developed.  The latter was projected to enable delivery of 10 kJ or more in a 
few picoseconds with a spot size of order 10 µm.    

One dimensional radiation magnetohydrodynamic (MHD) models suggested that it might be 
possible to compress a cryogenic fiber to between a few hundred to 1000 g/cm3 at nearly Fermi 
degenerate conditions.  Theory at the time [5] suggested that the cool, collapsed pinch might be 
resistively stabilized against violent MHD instability (sausage and kink modes) since the magnetic 
Reynolds number, the ratio of diffusion time to Alfven wave time scales, could be fairly small.  While 
the final pinch might be stabilized, the collapse could be expected (and observed) to remain unstable 
so that high density could only occur in very localized regions.  Only high density regions have the 
reactivity to be relevant to ignition and burn.  At a current of about 20 Megamperes, the models 
indicated the compressed DT could reach 𝜌𝑅 ≈ 1, sufficient for isochoric ignition if a heat source 
could rapidly bring the fuel to fusion temperatures.  Consulting equation 1, and inserting 𝜌𝑅 = 1,𝑇 =
5𝑘𝑒𝑉 one finds an ignition spot energy of 10kJ at a density of 500 g/cc and pressure of 1900GBar.  
The new short pulse laser technology seemed a good candidate as a heat source, since it could deliver 
the energy before the fuel could disassemble, although there were many questions about the coupling 
efficiency.  The inward propagation of energy from the critical surface would also be complicated by 
the very strong magnetic field that may localize even highly relativistic electrons transverse to the 
field.  The fiber pinch (in 1D) had the advantage of a sharp density gradient at the edge of the fuel, as 
shown in Figure 5.  The steep profile meant the critical surface for the laser was close to the pinch 
surface so that the ignition energy was deposited near where it was needed in the dense fuel.  The 
sharp gradient is caused by the resistive electric field, giving a strong inward-directed Poynting flux.  
Low-density matter is swept inward by the associated 𝐸×𝐵 velocity.  In discussions on the subject, 
John Nuckolls suggested replacing the pinch with laser compression.  It was not clear how to get 
through the extended corona in the laser-compressed case to deposit the energy in the dense fuel.  Max 
Tabak independently invented the Nuckolls version of the idea and added the ideas of a hole boring 



 
 
 
 
 
 

laser or a focus cone to allow coupling through the corona.  The different efforts were combined and 
Fast Ignition at Livermore was launched [6].  

 
Figure 5. a) Collapsed pinch in cross-section b) Density and magnetic field profile. c) Heating to 

ignition with a short pulse laser d) Residual low β instability draws out a corona 
 

The fiber pinch version of Fast Ignition fell out of favor for several reasons.  There are practical 
difficulties in collocating the short pulse laser pulse in space and time with the radiatively collapsed 
regions.  The more recent development of the X-pinch might ease that difficulty.  Also, further work 
on z-pinch stability [7] showed that, while the high density portions of the pinch might be resistively 
stabilized, the low density edge remains unstable.  It is well known from MHD theory that at low β, 
where β is the ratio of plasma to magnetic pressures, curvature or gravitational instabilities (e.g., 
sausage and Rayleigh Taylor modes) become electrostatic in nature.  The electrostatic modes have 
negligible perturbed current and hence no resistive stabilization.  The instability would likely pull out 
a plasma corona and complicate laser coupling, as sketched in figure 5(d).    

Study of Fast Ignition led the author to a broader exploration of fusion applications of pulsed 
power.  In the next section we will see how pulsed power leads us back to possibilities for indirect 
drive ICF.   

4.  Pulsed power hohlraum-driven fusion 
It has been known for many years that imploding fast pinches couple strongly to radiation and produce 
some of the brightest x-ray sources in existence [8].  The work done on the plasma by magnetic forces 
is mostly radiated at stagnation.  As noted above the z-pinch is typically strongly unstable, yet it 
appears that the unstable dynamics actually enhance conversion of magnetic to kinetic energy by 
providing additional degrees of freedom for the conversion.  The instability time scales are of order 
the Alfven transit time, which is comparable to stagnation times of the pinch. The inward  𝐸×𝐵 
Poynting flux discussed above is enhanced by instability, drawing much of the magnetic energy of the 
system into the stagnation, and hence efficiently into x-rays.  Experiments at Sandia National 
Laboratories on the Saturn and Z facilities showed the x-ray sources could be used to heat hohlraums.   

Of particular interest were vacuum hohlraums where the collapsing pinch drives an enclosing 
hohlraum,  leading to the possibility that these could be a candidates for indirect drive [9].   Key parts 
of the concept were to place pinches in primary hohlraums, on each end of a secondary hohlraum 
containing the capsule, with a Faraday cage barrier between hohlraums.  The Faraday cage is an array 
of narrow radial spokes or a metal web that is largely transparent to x-rays but prevents magnetic 
fields from perturbing the secondary hohlraum and capsule.  The pinches reside behind shine shields 
so that the capsule has no direct view of the pinch and the small-scale non-uniformities of the pinch 
emission are highly smoothed by the hohlraum.  Symmetry is tuned through hohlraum geometry, e.g. 
length to diameter of the secondary hohlraum and pulse shaping is achieved by adding shells to the 
imploding pinch.  Each of these aspects of the concept was successfully tested in a remarkable series 
of experiments at Sandia [10].  For example, symmetry control to ~ 3% was demonstrated. 

The difficulty with the vacuum hohlraum concept is in reaching high radiation temperatures.  The 
design with 16 MJ of pinch energy reached secondary temperatures of 220 eV,  sufficient to give 
ignition and high yield at convergence ratios comparable to the nominal NIF ignition target.  If it were 
possible to reach higher temperatures, e.g. ~ 300 eV, then the energy advantage of the pinch could be 
of great value for adding margin as discussed in section 1.    Figure 6 shows such a scheme, where the 



 
 
 
 
 
 

imploding pinches are shifted axially by guide cones in order to flow into primary hohlraums with 
small wall area, and correspondingly small wall loss, compared to the original concept.  The concept is 
similar to one proposed by Chittenden [11]. 

 
Figure 6. Double-ended vacuum hohlraum  geometry where the pinch is projected axially through 

an entrance hole, the ZEH, into a small primary hohlraum. Middle image shows secondary 
temperatures versus pinch location for Z-like energy.  The rightmost image shows secondary 

temperatures for a 2.5X linear scale of the Z-scale hohlraum with 16MJ of pinch energy. 
 
The radiation temperatures in Figure 6 are derived from a simple wall loss and coupled hohlraum 
model [11].  The capsule in the 2.5X scale hohlraum with 16MJ pinch sources absorbs nearly 3MJ and 
is driven at close to 300 eV, suggesting a potential way of reaching the robust ignition regime for the 
Euler scaled high foot capsule shown in Figure 1. 
 
Conclusions 
HED fusion is rich with multiple approaches, and exciting progress is occurring on the flagship NIF 
facility.  Experimental progress points to the possible paths ahead toward ignition, as sketched in 
figure 2.  The paths include improvements in implosion quality and hohlraum control on the NIF, but 
may well also include other approaches such as pulsed-power driven indirect drive.  
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